
PHYSICALLY BASED RENDERING

CIS 565 Fall 2014

University of Pennsylvania

by Harmony M Li

Announcements

• Project 3 RELEASED

•  Due Wed, 10/8

• Office Hours on 10/5, 10/8 and 10/12

•  Out of town, will be looking on Google forums

•  Be specific about your questions!

Outline

• Motivation

• Review and basics

• Rendering equation

• Naïve pathtracing

• Parallelization

• Optimization

• Base Code Tour

Acknowledgements

• Karl Yining Li

•  Liam Boone

MOTIVATION

Motivation

Motivation

RENDERING 101

Rendering 101 : Human Perception

• Human vision : what we “see” is reflected light

•  Light scattered from objects

Rendering 101 : Human Perception

• Different materials have different scattering properties

Rendering 101 : Physics

•  Light : wave-particle duality

•  Photons

•  Waves

•  Energy

Rendering 101 : Rays

• Model light as rays

•  Assume light moves relatively straight

•  When hitting an object, the direction of the ray is modified

Rendering 101 : Global Illumination

•  Illumination not only from direct sources

Rendering 101 : Global Illumination

• Direct Illumination ONLY

Rendering 101 : Global Illumination

Rendering 101

•  “Light simulation”

• Costly to simulate from light’s

perspective

•  Therefore, rays shot from

camera

RENDERING EQUATION

Rendering Equation

• Kajiya,1986 : “The Rendering Equation”

Rendering Equation : Diffuse

•  Equal probability of scattering in all directions

Rendering Equation : Specular

• Perfect :

•  Ray reflected about the normal

Rendering Equation : Dielectrics

•  Fresnel reflection / refraction

•  Shlick’s approximation

PATHTRACING

Pathtracing

PARALLELIZATION

GPU Pathtracers

• Peter and Karl’s GPU Path Tracer:

•  https://vimeo.com/41109177

• BRIGADE Renderer:

•  http://www.youtube.com/watch?v=FJLy-ci-RyY

• Octane otoy:

•  http://render.otoy.com/gallery.php

OPTIMIZATION

How many bounces per path?

How many bounces per path?"
4?

How many bounces per path?"
4? 3?

How many bounces per path?"
4? 3? 2?

How many bounces per path?"
4? 3? 2? 1?

How many bounces per path?"
4? 3? 2? 1? 0?

How many bounces per ray?

• We have no idea!

• What does this imply about parallelizing by pixel?

Wasted Cycles

• GPU can only handle finite number of blocks at a time

•  If some threads need to trace more bounces, then others

might spend too much time idling

Ray Parallelization

• Parallelize by ray, not pixel

• Multiple kernel launches that trace individual bounces

1.  Construct pool of rays that need to be tested

2.  Construct accumulator image, initialize black

3.  Launch a kernel to trace ONE bounce

4.  Add any new rays to the pool

5.  Remove terminated rays from the pool

6.  Repeat from 3 until pool is dry

Ray Parallelization

• Each iteration will have fewer rays, requiring fewer
blocks, and giving faster execution.

• Works very well (even in practice)

• Be careful of edge cases!

Example

• Ray pool:

•  1, 2, 3

•  Threads needed:

•  3

• Ray 1 terminates

Example

• Ray pool:

•  2, 3

•  Threads needed:

•  2

Example

• Ray pool:

•  2, 3

•  Threads needed:

•  2

• Ray 3 terminates

Example

• Ray pool:

•  2

•  Threads needed:

•  1

• Ray 2 terminates

Optimization

• Wasted cycles / Zero contribution rays

•  Stream compaction!

• Acceleration structures

BASE CODE TOUR

Base Code

• Scene reader

• UI / Rendering visualization

•  PBO transfer

•  Intersection code

• CPU image write

Project Expectations

• GPU Path tracing

•  Intersections, accumulation, etc. on GPU

• Diffuse and specular materials

•  2 of the following features:

•  Fresnel reflection / refraction

•  OBJ loading

•  Acceleration structure (BVH, k-d tree, etc.)

•  Depth of field

•  Subsurface scattering

•  Etc. (If you have other ideas, be sure to contact us)

Project Expectations

• Analysis for every extra feature:

•  Overview write up

•  When adding this feature, what is the performance impact? Why?

•  If there are special cases, why you implemented it the way you did.

•  How can this be optimized any further?

•  Pros / cons of GPU vs. CPU implementation

Tips for README

• Sell your project

• Assume reader has base knowledge of path tracing

•  View this as a wiki to document your code

• Do NOT leave this for the last minute

Further Reading

• Physically Based Rendering, 2e. (Pharr, Humphreys)

• Realistic Image Synthesis Using Photon Mapping (Jensen)

•  smallPT

