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Announcements

• Project 3 RELEASED

•  Due Wed, 10/8


• Office Hours on 10/5, 10/8 and 10/12

•  Out of town, will be looking on Google forums 

•  Be specific about your questions!




Outline
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MOTIVATION




Motivation




Motivation




RENDERING 101




Rendering 101 : Human Perception

• Human vision : what we “see” is reflected light

•  Light scattered from objects




Rendering 101 : Human Perception

• Different materials have different scattering properties




Rendering 101 : Physics

•  Light : wave-particle duality

•  Photons

•  Waves


•  Energy




Rendering 101 : Rays

• Model light as rays

•  Assume light moves relatively straight

•  When hitting an object, the direction of the ray is modified




Rendering 101 : Global Illumination

•  Illumination not only from direct sources




Rendering 101 : Global Illumination

• Direct Illumination ONLY




Rendering 101 : Global Illumination




Rendering 101

•  “Light simulation”

• Costly to simulate from light’s 

perspective

•  Therefore, rays shot from 

camera




RENDERING EQUATION




Rendering Equation 

• Kajiya,1986 :  “The Rendering Equation”




Rendering Equation : Diffuse

•  Equal probability of scattering in all directions




Rendering Equation : Specular 

• Perfect :

•  Ray reflected about the normal




Rendering Equation : Dielectrics

•  Fresnel reflection / refraction

•  Shlick’s approximation




PATHTRACING




Pathtracing










PARALLELIZATION




GPU Pathtracers

• Peter and Karl’s GPU Path Tracer:

•  https://vimeo.com/41109177


• BRIGADE Renderer: 

•  http://www.youtube.com/watch?v=FJLy-ci-RyY


• Octane otoy:

•  http://render.otoy.com/gallery.php




OPTIMIZATION




How many bounces per path?




How many bounces per path?"
4?




How many bounces per path?"
4? 3?




How many bounces per path?"
4? 3? 2?




How many bounces per path?"
4? 3? 2? 1?




How many bounces per path?"
4? 3? 2? 1? 0?




How many bounces per ray?

• We have no idea!

• What does this imply about parallelizing by pixel?




Wasted Cycles

• GPU can only handle finite number of blocks at a time

•  If some threads need to trace more bounces, then others 

might spend too much time idling




Ray Parallelization

• Parallelize by ray, not pixel

• Multiple kernel launches that trace individual bounces

1.  Construct pool of rays that need to be tested

2.  Construct accumulator image, initialize black

3.  Launch a kernel to trace ONE bounce

4.  Add any new rays to the pool

5.  Remove terminated rays from the pool

6.  Repeat from 3 until pool is dry




Ray Parallelization

• Each iteration will have fewer rays, requiring fewer 
blocks, and giving faster execution.

• Works very well (even in practice)

• Be careful of edge cases!




Example


• Ray pool:

•  1, 2, 3


•  Threads needed:

•  3


• Ray 1 terminates




Example


• Ray pool:

•  2, 3


•  Threads needed:

•  2




Example


• Ray pool:

•  2, 3


•  Threads needed:

•  2


• Ray 3 terminates




Example


• Ray pool:

•  2


•  Threads needed:

•  1


• Ray 2 terminates




Optimization

• Wasted cycles / Zero contribution rays

•  Stream compaction!


• Acceleration structures




BASE CODE TOUR




Base Code

• Scene reader

• UI / Rendering visualization

•  PBO transfer


•  Intersection code

• CPU image write




Project Expectations

• GPU Path tracing

•  Intersections, accumulation, etc. on GPU


• Diffuse and specular materials

•  2 of the following features:

•  Fresnel reflection / refraction

•  OBJ loading 

•  Acceleration structure (BVH, k-d tree, etc.)

•  Depth of field

•  Subsurface scattering

•  Etc. (If you have other ideas, be sure to contact us)




Project Expectations

• Analysis for every extra feature:

•  Overview write up

•  When adding this feature, what is the performance impact? Why?

•  If there are special cases, why you implemented it the way you did.

•  How can this be optimized any further?

•  Pros / cons of GPU vs. CPU implementation




Tips for README

• Sell your project

• Assume reader has base knowledge of path tracing

•  View this as a wiki to document your code

• Do NOT leave this for the last minute




Further Reading

• Physically Based Rendering, 2e. (Pharr, Humphreys)

• Realistic Image Synthesis Using Photon Mapping (Jensen)

•  smallPT



