
SHADOWS
For real-time rendering

Crysis 3 screenshot - http://www.gamingcentrum.com/wpcontent/uploads/2012/04/crysis42412-2.jpg

Sean Lilley

http://www.gamingcentrum.com/wpcontent/uploads/2012/04/crysis42412-2.jpg

Hard shadows

Basic ray traced shadows:
⦿ Shoot ray from eye
⦿ Ray hits a surface
⦿ Send shadow ray out to check if the light reaches this point
⦿ If the shadow ray is obstructed, then the point is in shadow

http://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg

http://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg
http://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg

Soft shadows

⦿ More realistic than hard shadows
⦿ Light source treated as a physical object
⦿ Shadow rays are now more like cones
⦿ Penumbra: partially shadowed
⦿ Umbra: completely shadowed

http://www.cse.chalmers.se/~uffe/SIGGRAPH2012CourseNotes.pdf

http://www.cse.chalmers.se/~uffe/SIGGRAPH2012CourseNotes.pdf
http://www.cse.chalmers.se/~uffe/SIGGRAPH2012CourseNotes.pdf

Common Shadow Techniques

⦿ Shadow Volumes
● Shadows are represented as polygonal volumes

in space
● Pros: accurate hard shadows
● Cons: slow, rasterization heavy

⦿ Shadow Maps
● Shadows are determined through depth buffer

comparison tests
● Pros: fast, support for soft shadows
● Cons: high memory usage, aliasing

Shadow Volumes

⦿ Invented by Frank Crow in 1977
⦿ Popularized by Doom 3 in 2005

Doom 3 screenshot - http://en.wikipedia.org/wiki/File:Doom3shadows.jpg

http://en.wikipedia.org/wiki/File:Doom3shadows.jpg

Shadow Volumes: Basic Approach

⦿ For each triangle in the scene, project its edges to
infinity along the direction of the light.

⦿ This truncated pyramid is the shadow volume.
⦿ Any part of the scene that lies inside the shadow

volume is shadowed.

http://www.sonic.net/~surdules/articles/cg_shadowvolumes/index.html

3D view 2D view

http://www.sonic.net/~surdules/articles/cg_shadowvolumes/index.html
http://www.sonic.net/~surdules/articles/cg_shadowvolumes/index.html

Shadow Volumes: Implementation

⦿ Depth pre-pass: render the scene into the depth buffer.
⦿ Render all shadow volumes

● If the shadow volume fragment passes the depth test:
○ If the triangle is front-facing, increment the stencil buffer.
○ If the triangle is back-facing, decrement the stencil buffer.

● If the value of the stencil buffer at a particular pixel is 0, then that pixel is not
in shadow.

⦿ Now render the scene again, enabling the color buffer.
● Use the stencil buffer as a mask. If the stencil buffer is greater than 0

for a particular fragment, discard the fragment
● Else, compute diffuse and specular lighting like usual

Image: Real-Time Shadows by Eisemann et al.

Shadow Volumes: Improvements

⦿ What if camera originates in a shadow volume? Won’t
the stencil values be wrong?
● Use z-fail (Carmack’s Reverse): If a shadow volume

fails the depth test, increment stencil value if back-
facing and decrement stencil value if front-facing.

⦿ Use the geometry shader to create shadow volumes
easily on the GPU.
● Emit triangle primitives for the shadow volume front cap, sides,

and back cap.

⦿ Create shadow volumes from simplified meshes
⦿ Use occlusion culling to reduce the number of shadow

volumes that need to be created.

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch11.html

Shadow Maps
⦿ Invented by Lance Williams in 1978
⦿ Very popular. The dominant technique in today’s

video games.

Battlefield 3 screenshot: http://www.geforce.com/Active/en_US/shared/images/guides/bf3-tweak/41_Shadows_Low.jpg

http://www.geforce.com/Active/en_US/shared/images/guides/bf3-tweak/41_Shadows_Low.jpg

Basic Approach

⦿ Render the scene from the light’s point of view.
● Treat the light like a camera.
● Render to a depth texture to create the shadow map.

⦿ Render the scene from the camera’s point of view.
● Transform each vertex from world space to light space in vertex shader.
● Send light space position to fragment shader.
● Compare the depth of the fragment to the depth stored in the shadow

map. If the depth is greater, it is shadowed.

Light frustum Shadow Map

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf
http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

Light Types
⦿ Directional light (sun) – use orthographic projection
⦿ Spot light – use perspective projection
⦿ Point light – like spot light, but requires an

omnidirectional shadow map.
● Create six light frustums and render to a cube map inside the

geometry shader.

⦿ Shadow mapping is expensive; usually only one light
source casts shadows in a standard video game.

Basic Shadow Mapping Problems

⦿ Projective Aliasing
⦿ Perspective Aliasing
⦿ Texture Resolution Limits

Projective Aliasing
⦿ Occurs when the slope of the geometry is parallel to

the light direction
● Best case: overhead light, flat floor
● Worst case: overhead light, straight walls

⦿ Depth buffer precision, shadow map resolution, and
float comparisons cause problems even for best case.
● Called z-fighting

http://fabiensanglard.net/shadowmapping/index.php

http://fabiensanglard.net/shadowmapping/index.php
http://fabiensanglard.net/shadowmapping/index.php

Projective Aliasing

⦿ Seriously affects the side of the circle

Modified from: http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

Depth Bias
⦿ Apply a constant depth bias

● During light pass, push depths slightly deeper
● Now depth comparison test will succeed in best case
● Still problematic in worst case

Modified from: http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

Depth Bias

http://i.imgur.com/8kEZ1En.png

http://i.imgur.com/8kEZ1En.png
http://i.imgur.com/8kEZ1En.png

Depth Bias

⦿ Too little depth bias causes z-fighting
⦿ Too much depth bias causes light leaking

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf
http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

Depth Bias

⦿ Bias should be dependent on triangle slope

Modified from: http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

Depth Bias

⦿ Use screen space derivatives, which are
calculated by hardware.
● glPolygonOffset automatically calculates

bias using screen space derivatives.
○ Takes a constant parameter and a slope-scaling parameter
○ Still need to tweak parameters for particular scenes

● Use GLSL commands dFdx and dFdy to
convert screen space neighbor pixels to
light-space slopes
○ More involved and computationally expensive

Other Improvements

⦿ Increase precision of depth buffer.
● GL_DEPTH_COMPONENT16
● GL_DEPTH_COMPONENT24
● GL_DEPTH_COMPONENT32F

⦿ Fit near and far plane of light frustum to fit the scene
⦿ Increase shadow map resolution if possible
⦿ Linearize depth-buffer.

● The camera may be looking at part of the scene that is far away
from the light, so we want the same amount of detail here as
close to the light.

Texture Resolution
⦿ Quality dependent on texture resolution

● Low res shadow maps produce blocky results
● High res shadow maps look better, but take up a lot of memory
● What if the scene is really large?

○ A single texture cannot stretch across the whole world

2048 x 2048 1024 x 1024 512 x 512

Perspective Aliasing

⦿ Size of pixels in view space doesn’t
match size of texels in shadow map.

http://www.cg.tuwien.ac.at/~scherzer/files/papers/LispSM_survey.pdf

http://www.cg.tuwien.ac.at/~scherzer/files/papers/LispSM_survey.pdf
http://www.cg.tuwien.ac.at/~scherzer/files/papers/LispSM_survey.pdf

Advanced Shadow Mapping

⦿ Want to fix perspective aliasing
● Need more detail near the eye, and less detail

away from the eye.
⦿ Want to handle texture resolution limits

● Maintain constant texture resolution,
independent of scene size

● Center shadow map around eye
● Shadow map should not cover areas that are out

of view

Advanced Shadow Mapping

⦿ Solutions:
● Warping techniques

○ Perspective Shadow Maps (PSM)
○ Light Space Perspective Shadow Maps (LiSPSM)
○ Logarithmic Perspective Shadow Maps (LogPSM)

● Frustum partitioning techniques
○ Cascaded Shadow Maps

● aka Z-partitioning, parallel split maps
○ Sample Distribution Shadow Maps

Perspective Shadow Maps
⦿ Apply perspective transformation to scene before rendering into

shadow map
● Simply replace the standard view-projection matrix

⦿ Skews shadow map so that there is more density near the eye.
⦿ Still uses a single shadow map of the same resolution, but gets

more out of it.

http://www-sop.inria.fr/reves/Basilic/2002/SD02/PerspectiveShadowMaps.pdf

http://www-sop.inria.fr/reves/Basilic/2002/SD02/PerspectiveShadowMaps.pdf
http://www-sop.inria.fr/reves/Basilic/2002/SD02/PerspectiveShadowMaps.pdf

Light Space Perspective Shadow Maps

⦿ Fixes limitations of Perspective Shadow Maps
● Perspective transformation applied to light view-projection

matrix rather than eye view-projection matrix.
○ Handles shadow casters that are behind the viewer
○ Lights do not change their type (PSM may convert directional

lights to point lights, incorrectly)
○ Overall more stable and better-distributed error

http://www.cse.chalmers.se/~uffe/SIGGRAPH2012CourseNotes.pdf

http://www.cse.chalmers.se/~uffe/SIGGRAPH2012CourseNotes.pdf
http://www.cse.chalmers.se/~uffe/SIGGRAPH2012CourseNotes.pdf

Logarithmic Perspective Shadow Maps

⦿ Perspective projection + logarithmic transformation.
⦿ Optimal constant error
⦿ Requires logarithmic rasterization, which is not

supported by current GPU hardware

http://gamma.cs.unc.edu/LOGPSM/

http://gamma.cs.unc.edu/LOGPSM/
http://gamma.cs.unc.edu/LOGPSM/

Results

⦿ Standard shadow map

http://gamma.cs.unc.edu/LOGPSM/

http://gamma.cs.unc.edu/LOGPSM/
http://gamma.cs.unc.edu/LOGPSM/

⦿ Perspective Warping (LiPSM)

http://gamma.cs.unc.edu/LOGPSM/

Results

http://gamma.cs.unc.edu/LOGPSM/
http://gamma.cs.unc.edu/LOGPSM/

⦿ Logarithmic Perspective Warping

http://gamma.cs.unc.edu/LOGPSM/

Results

http://gamma.cs.unc.edu/LOGPSM/
http://gamma.cs.unc.edu/LOGPSM/

Cascaded Shadow Maps
⦿ Partition light frustum into multiple frusta
⦿ Higher density near the eye, lower density away from the eye
⦿ Each subfrustum gets its own shadow map. They are all the same size.
⦿ Fragment shader samples the appropriate shadow map
⦿ May use warping methods within each subfrustum

http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307(v=vs.85).aspx

How to choose the partitions?

⦿ Chose static partitions based on specific views
● Birds eye view requires only a few cascades
● Standard walking view requires multiple cascades

when the scene extends far.
● Annoying to always tweak parameters

⦿ Split types
● Artist determined
● Uniform
● Logarithmic
● Find midpoint

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html

How to choose the partitions?

⦿ Better to have a dynamic approach
⦿ Sample Distribution Shadow Maps

● Use geometry information and occlusion tests to
create tightly bound frusta.

● Approximate logarithmic splits
● A more complicated approach involves analyzing

the z distribution of samples (from the camera’s
point of view) in a compute shader.

Results
Standard Cascaded Shadow Maps Sample Distribution Shadow Maps

http://visual-computing.intel-research.net/art/publications/sdsm/sampleDistributionShadowMaps_SIGGRAPH2010_notes.pdf

http://visual-computing.intel-research.net/art/publications/sdsm/sampleDistributionShadowMaps_SIGGRAPH2010_notes.pdf
http://visual-computing.intel-research.net/art/publications/sdsm/sampleDistributionShadowMaps_SIGGRAPH2010_notes.pdf

Smoothing Hard Shadows

⦿ Linear Filtering
⦿ Percentage Closer Filtering
⦿ Variance Shadow Maps

Linear Filtering
⦿ Enable linear filtering on shadow map texture

● Interpolates depth between 2x2 region of pixels
instead of just choosing the depth of the closest pixel

⦿ Really, really simple. But not exactly correct.

512x512 with GL_NEAREST 512x512 with GL_LINEAR

Percentage Closer Filtering
⦿ Simulate soft shadows by looking at

neighboring shadow texels.
⦿ Take 4 nearest samples in shadow map

● Use GLSL command textureGather
⦿ Compare the surface’s depth with each of

these samples.
● Supply surface depth to textureGather call

⦿ Bilinearly interpolate the results
⦿ Different than linear filtering, which interpolates

the depth values and not the results of the
comparisons.

⦿ To get a larger penumbra, sample 16 nearest
texels with 4 textureGather calls.

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html
http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Percentage Closer Filtering

⦿ Sample random neighbors to get a
less patterned look
● Use a non-uniform disk. Rotate the disk

using random rotations stored in a texture.

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf
http://developer.amd.com/media/gpu_assets/Isidoro-ShadowMapping.pdf

Variance Shadow Maps

⦿ Store depth in one map, and depth² in another
⦿ Filter these maps to your liking

● Mip-map
● Gaussian blur
● Summed area tables

⦿ Determine fragment’s shadow strength
through a probability function

Where M1 = shadow map sample
 M2 = depth² shadow map sample
 t = fragment depth
 σ² = variance
 pmax = max % of samples in light
 http://graphics.stanford.edu/~mdfisher/Shadows.html

http://graphics.stanford.edu/~mdfisher/Shadows.html
http://graphics.stanford.edu/~mdfisher/Shadows.html

Variance Shadow Maps

⦿ Advantages:
● Able to capture large penumbra at a much smaller

cost than PCF
● Does a great job of blurring low res shadow maps

21 x 21 blur filter kernel with Six 512x512 shadow maps
Running at 141 fps

http://graphics.stanford.edu/~mdfisher/Shadows.html http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html

http://graphics.stanford.edu/~mdfisher/Shadows.html
http://graphics.stanford.edu/~mdfisher/Shadows.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch08.html

Variance Shadow Maps

http://http.download.nvidia.com/developer/presentations/2006/gdc/2006-GDC-Variance-Shadow-Maps.pdf

http://http.download.nvidia.com/developer/presentations/2006/gdc/2006-GDC-Variance-Shadow-Maps.pdf
http://http.download.nvidia.com/developer/presentations/2006/gdc/2006-GDC-Variance-Shadow-Maps.pdf

Variance Shadow Maps

⦿ Main problem: light bleeding
● Happens when more than two occluders that are far apart

shadow the same region.
● At the lit edges, the probability function uses the depth of

the triangle to estimate the shadow strength.
○ The depth map can only store one sample per pixel, so there is

no understanding of a second, closer occluder (the teapot)
● Somehow we need to know the depth distribution …

http://pixelstoomany.wordpress.com/category/shadows/light-bleeding/

http://pixelstoomany.wordpress.com/category/shadows/light-bleeding/
http://pixelstoomany.wordpress.com/category/shadows/light-bleeding/

Variance Shadow Maps
⦿ Light Bleeding solutions

● Add variance threshold so that you
never get very light areas
○ But makes the shadow falloff too strong

● Represent discrete depth steps with
smooth functions
○ Convolution shadow maps

● Approximate depth steps with 1D Fourier
expansion

○ Exponential shadow maps
● Approximate step function with exponential

function

http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf

http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf

Which techniques to use?
⦿ What shadow technique family should I use?

● Shadow Volumes or Shadow Mapping?
● Shadow Mapping

⦿ Which technique should I use to combat perspective
aliasing and shadow map resolution issues?
● Warped perspective shadow maps or Cascaded Shadow Maps?
● Cascaded Shadow Maps

⦿ Which soft shadow technique should I use?
● Percentage Closer Filtering for hard shadows with soft edges
● Variance Shadow Maps for very soft shadows

⦿ Which technique should I use to fix light bleeding?
● Exponential Shadow Maps

⦿ What more can I do to make my shadows better?
● Use ambient occlusion to approximate global illumination
● Screen space effects like depth of field and motion blur can help smooth

shadow artifacts.

WebGL demo
http://codeflow.org/entries/2013/feb/15/soft-shadow-mapping/

http://codeflow.org/entries/2013/feb/15/soft-shadow-mapping/
http://codeflow.org/entries/2013/feb/15/soft-shadow-mapping/

Resources

⦿ Every image credit leads to a valuable
resource on that topic.

⦿ I referenced the following books:
● Real-Time Rendering, Third Edition by Akenine-

Moller, Haines, and Hoffman
● Real-Time Shadows by Eisemann, Schwarz,

Assarsson, and Wimmer

